Reinforcement Learning Techniques in

'Jumper’

MITCHELL BRUNTON and SHAANAN N. COHNEY
University of Melbourne

In this paper, we focus on the development of two agents for playing
*Jumper’, under a memory limit of 1024KB and a time limit of 15s per
game. Our aim was twofold, to develop a winning agent, and to investigate
the effectiveness of machine learning as applied to the problem. Our first Al
utilized game-search, and saw us choose between Negascout, Minimax and,
alpha-beta pruning variants of the aforementioned. For the development
of our evaluation function we investigated 1) the number of safe spaces
secured 2) The number of regular spaces secured 3) the number of jump
moves possible from a given state 4) board density. For the evaluation to be
effective, we tackled the problem of weight generation using machine learn-
ing. Our final system used Temporal Difference learning with a gradient
descent model. It was found however that learning during play was ineffec-
tive and so after learning, we assigned static weights. This agent succeeded
in defeating all other agents developed by the competing researchers. The
searching player was found to function optimally with Minimax and o — 3
pruning with a weighting of safe spaces to regular spaces of 0.6:0.4.

The second Al developed was modelled after G. Tesauro’s TD-Gammon
backgammon player and used a multi-layer perception neural network in
place of a standard evaluation function. It was trained against three differ-
ent players; 1) itself 2) the search player 3) a random player.

Our tests show that while the Neural Network player did learn, it developed
only so far as to reduce its margin of loss, with outcomes converging after
around 20,000 games. However, it did display intelligence in discovering
features that previously required expert knowledge to identify.

While machine learning applied to search resulted in superior outcomes,
the neural network indicated much room for further improvement. Improve-
ment in the neural network is expected to result in more insight into intel-
ligence in general, exhibited through its zero-knowledge discovery of fea-
tures.

General Terms: Machine Learning, Jumper

Additional Key Words and Phrases: temporal difference learning, neural
networks, negascout, minimax, alpha-beta

1. INTRODUCTION

The development of intelligent agents for zero-sum two agent
board games remains a challenging problem within the field of AL
Jumper is a two player, sequential game played on an NxN board.
The branching factor in Jumper is non constant but is experimen-
tally measured to be an average of 37.26 over 1000 runs, within
the capabilities of modern search algorithms on reasonable time
scales (measured in seconds per move). This report looks to ad-
dress the problem of reinforcement learning as applied to devising
an effective game-playing agent for the game of Jumper. Als were
evaluated in terms of efficiency and effectiveness. We divided the
problem into two distinct sections; improving the performance of
tree search agents with expert knowledge and, developing a neural
network Al (also referred to as MLP Player) that started with zero-
knowledge. The research for our agents draws largely on Tesauro’s
TDGammon [Tesauro 2002] and the more modern TD-Leaf algo-

rithm [Baxter et al. 1999]. We aim to develop the two techniques
side by side in order to evaluate which is most effective in develop-
ing a competitive player. Importantly we limited our Als to 1024KB
of memory and 15s per game, which allows us to focus on improve-
ment in technique rather than in hardware advances.

Whilst game search may have limited other applications, the re-
sults from improving learning techniques have the ability to con-
tribute to the improvement of general Al in the sense that they al-
low the extrapolation of general conditions from limited data. This
was especially evident in the identification of important evaluation
features by our zero-knowledge Neural Network Al.

In developing the search Al we compared search algorithms in-
cluding: minimax with o — 3 pruning [Richards and Hart 1961] and
Negascout [Reinefeld and Hsu 1983]. We also investigated evalua-
tion features, along with the ability of two different machine learn-
ing schemes, gradient descent learning and TD-Leaf learning as
described in [Baxter et al. 1999] to judge the relative worth of these
features, and fine-tune our game-playing agent’s ability to evaluate
board states.

Our final results were promising in that our MLP Player defi-
nitely developed a measure of capability with the game, and was
by far more time efficient than the searching Als. However, it could
not attain the level of strength displayed by them. TD learning tech-
niques applied to search proved to be highly effective in developing
a strong player, but came at the cost of time efficiency. Our final Al
thus utilized feature weights hard coded from the results of training
in order to minimize overhead during play.

The strongest Al we produced was able to defeat all competing
researcher’s variants and is thus a good indicator of the strength of
reinforcement learning techniques as applied to this specific prob-
lem.

2. AGENT DESIGN

We designed three distinct agents, utilizing three separate
paradigms.

Our first designed agent was a random move-finder. Each game
state was encapsulated in a node, and that node’s children were
generated. A child was selected at random, and the move corre-
sponding to that child was returned. As expected, this algorithm
performed poorly, however it allowed us to ensure the structure of
our code was sound before we moved on to more adept playing
strategies.

The second agent was based around regular game search meth-
ods. Research on turn based game agent design has traditionally
focused on two areas. The first of these, search algorithm design, is
focussed on developing techniques for efficiently exploring game
trees. Key developments include 'minimax’, a basic technique,
attributed to John Von Neumann, and the subsequent refinement
via a — (3 pruning discovered in the late 1950s [Richards and Hart
1961]. However, even with pruning, most games are not searchable
down to terminal nodes. This required the development of heuris-
tics for the utility function: an evaluation function. Evaluation

M. Brunton and S. Cohney

function design is the second core challenge in designing game
playing agents and was the more important of the two factors
in determining player strength within our constraints. This was
because all the competing Als were able to explore roughly the
same search space so the delineating factor was our ability to
analyse a given board state.

The third agent designed was based around a feed-forward,
multi-layer perception neural network. In simpler terms, it utilized
a network of nodes with multiple inputs and dual outputs to model
a complex non-linear reward function.

The win condition for *Jumper’ is having more pieces on the
board than your opponent at a terminal node, when all board spaces
are occupied or dead. This was the starting point for the devel-
opment of both of evaluation function and the input for back-
propagation in our neural network player.

2.1 Search Algorithms

Our initial attempt at a search agent employed a standard minimax
algorithm which expanded the game-tree to depth four. The agent
immediately bested both its human creators and achieved a one-
hundred percent win rate against the random Al. Further improve-
ments made to minimax did not directly affect playing ability, only
efficiency. However, under time constraints an improvement in effi-
ciency allowed for the evaluation function to be more computation-
ally expensive, and allowed searching to a greater depths. The first
improvement we made was the implementation of o — (3 pruning.
By not exploring subtrees for which there can be no better outcome
than what has already been seen, we can ”prune” large sections of
the game-tree, saving time. The effectiveness of this approach is
dependent on how well ordered the nodes of our tree are. In o« — 8
pruning, when taking the 'max’ of a node’s children, it is most ben-
eficial for child nodes to be ordered from best to worst, and when
taking the min’, optimal ordering is worst first. However, sorting
nodes incurs a significant overhead. We experimentally verified that
for our evaluation function the added computation it takes to sort
nodes was not outweighed by the savings from pruning. This could
be due to our failure to find a heuristic measure of a node’s utility
of both sufficient efficiency and that closed reflected it’s true utility.

We tried several techniques to improve move ordering, the first of
which was to use our evaluation function. This ordered maximum
nodes via the difference in number of player pieces and number of
enemy pieces. This tactic had the draw-back of being incredibly
slow, instead of just evaluating leaf nodes, we were now evaluating
every non-root node in our game tree. Our heuristic had to be some-
thing much faster to calculate. It seemed a reasonable assumption
that jump moves are better than non-jump, or ”place” moves. Each
node, as well as encapsulating a game board, also holds the Move
object which links it to its parent node. By ordering nodes in terms
of the length of their Move object, we were able to process nodes
corresponding to long jumps first, then shorter jumps and finally
place moves. This ordering scheme had the added benefit of using
the exact same code for maximising nodes and minimising nodes:
the ’best” child node of a maximising node is the node associated
with the longest player jump move, and the “worst” child node of
a minimising node was the node associated with the longest enemy
jump move.

Our method which generated a node’s children contained two
sub-methods: one to generate a list of valid place moves and one to
generate a list of valid jump moves. Initially in our code, ’place”
children were generated in order before ’jump” children in the re-
turned list of moves. We found that by reversing this, and order-

ing jump moves first, the time it took to choose a move improved
by a factor of eight. Moreover, this method was also computation-
ally more efficient that sorting nodes by move length. This final
node-ordering scheme introduced no overhead, and any further at-
tempts we trialled to order the nodes using other heuristics resulted
in slower overall runtime.

Negascout is an alternative to alpha-beta pruning that aims to
further minimize the size of the explored search tree [Reinefeld
and Hsu 1983]. The “nega-" prefix denotes that rather than utiliz-
ing separate functions to calculate the utility of maximum and min-
imum nodes, a negative recursive call is used. This decreases the
difficulty of implementation. The “’scout” denotes that the searches
are first performed using a null window, which can result in a gain
in efficiency given sufficiently well-ordered nodes. This potentially
allows searching to greater depths. We found that with the given
move ordering, « — /3 pruning was more efficient than Negascout.
Our attempts to further order the nodes carried a computational cost
which outweighed the benefits gained by Negascout. We thus chose
minimax with alpha-beta pruning as the search algorithm for our fi-
nal game-playing agent.

We also trialled only considering the child nodes corresponding
to place moves if there were no children corresponding to jump
moves. Whilst the efficiency did improve drastically, the exponen-
tial nature of increasing search depth meant that we still couldn’t
feasibly search any deeper without violating our time constraints.
Regardless, we tested this approach at a search depth of six, against
our original player at a search depth of four, and the original player
proved victorious. We believe this is probably due to Jumper not
lending itself well to a greedy approach: good players will often
make moves which don’t immediately maximise their progress, in
order to set up better moves later on. By limiting our player’s move
choices, we infringed on its ability to work towards good moves in
the future, and this was not counterbalanced by the increased search
depth.

2.2 Evaluation Function Design

The skill of our agent was directly correlated with the effective-
ness of our evaluation function in representing the utility of a
given board state. A typical evaluation function consists of a lin-
ear weighted sum of different feature functions, where each fea-
ture measures some property of the board, with the assumption that
these properties accurately summarise what constitutes a strong
board position for the player. Our evaluation function returned a
+1 for a winning board configuration, O for a draw, and -1 for a
loss. Our initial evaluation function initially returned the value of
a single feature; measuring the difference between the number of
player pieces and enemy pieces on the board. By observing our
agent playing games against itself, we noticed that the edge cells
tended to be filled in quicker than inner-cells. More generally, place
moves tended to form clumps of filled-in cells. We surmised that
the reason for this was that these positions were less likely to be
jumped by the enemy. This led to the development of our second
feature function, which calculated the number of safe player pieces,
less the number of safe enemy pieces. A piece was deemed ’safe’
if it could not be jumped from any child state of the current board.
Our improved agent outplayed our single-feature implementation.
However the likelihood of a win fluctuated as we altered the two
weights w; and w- in our evaluation function.

‘We noted that this approach was ignoring potentially important
information; by designating a piece as either “jumpable” or ’non-
jumpable”, we were ignoring the fact that certain pieces can be
more jumpable than others. Cells can be jumped over four differ-

ent axes (horizontally, vertically, left/right-diagonally), and so we
devised a feature which took into account the number of differ-
ent directions each piece could be jumped from (ranging from 0 to
4). Another feature was added which measured the density of the
board, the reasoning being that each of the values of other feature
functions would have a more pronounced effect if the game was
close to being over. For example, having two more pieces on the
board than the enemy would be more significant if there were only
four empty cells left, than if there were twenty.

In order to automate the selection of effective weight values, we
implemented two different machine learning schemes: gradient de-
scent learning, and temporal-difference leaf learning. These meth-
ods have a lot of cross-over, as both involve iteratively adjusting
individual weight values by shifting them towards a local minima
of some error function. In our case, this error function was the dif-
ference between the utility of a node, as calculated by evaluating it
directly, and its true utility, which involves using our move-finding
algorithm to expand out its full tree.

Gradient descent learning, was applied in the initialisation phase
of our player. A set of random boards were generated, and each
of these boards were evaluated using our linear weighted sum of
feature functions (initially each weight is set to a uniform value).
We then expanded each node, using our alpha-beta algorithm, and
calculated its true utility. While the absolute difference between
the result of our evaluation function on the node and the node’s
true utility was greater than some value epsilon, we updated each
weight parameter so it moved in towards a local minima of an error
function. This essentially allowed our evaluation function to look
further down a game tree when it evaluated leaf nodes, as their pro-
jected utility starts to resemble the utility of nodes from a greater
depth. In order to have a larger set of random game boards, we re-
duced our search depth while performing gradient descent learning
to just two. We are unsure of all of the consequences of this reduc-
tion.

We also implemented temporal difference learning in the form of
the TDLeaf algorithm as per [Baxter et al. 1999]. This also updates
the weight vector, however it does so on-the-fly, as we are expand-
ing our game tree. When we have found our optimum route down
the expanded game tree, we update each node along this path, tak-
ing its true utility to be the utility of the leaf node of this path. This
form of machine learning ended up being more effective than gra-
dient descent, possibly due to the fact that it updated nodes which
represented current or likely future board states of the game, rather
than just the random nodes used in gradient descent. This allows
temporal-difference learning to respond in real time to different
playing strategies.

2.3 Neural Network Player

Our neural network aimed to replicate the functionality of a
standard evaluation function, but to do so with inputs correlating
solely to the board state at any given time and no knowledge
engineering. By using reinforcement learning techniques, it was
hoped that the two outputs of the neural network would correlate to
the probability of a win for each player. The aim of this agent was
to determine the levels of expert knowledge required in designing
a strong agent. We utilized a three layer neural network, modelled
after that of G. Tesauro in his paper on TDGammon [Tesauro
2002] (details in Appendix A).

Each ’perceptron’ or node in the network utilized a sigmoid
function to convert inputs into a single output value, so as to
normalize the values and distribute them appropriately from -1
to 1, each node’s inputs were assigned a weight before being fed

Reinforcement Learning Techniques in "Jumper’ . 3

in. The aim was that, by adjusting the weights appropriately, the
function would approximate the utility value for a given board.
The agent was designed within the Encog Framework
(https://github.com/encog), in order to ease development and
allow testing of multiple learning algorithms.

In achieving our goal of designing a strong agent, a number of
challenges presented themselves.

A key parameter in the neural network model included the num-
ber of hidden units in the second layer of our three-layered network.
The number of hidden units represents a tradeoff: as the number of
hidden units increases, the number of weights in the network in-
creases exponentially, and so too does the required time for back-
propagation. However, more hidden units allows the network to
represent more complex functions, and if one does not provide a
sufficiently complex function to regress to, the output will not ac-
curately reflect the desired model (our reward function) [Cybenko
1989]. For the 6x6 board we settled on sixty hidden units, as in-
creasing it beyond this limit restricted the amount of training runs
we could perform within the time allotted for our research. An ad-
ditional trade-off that was later discovered and discussed in Sec-
tion 3, was that as the complexity of the function being modelled
increased, so too did the number of local minima in the approxima-
tions, leading to sub-optimal agents.

In order to most closely replicate Tesauro’s model, we utilized a
simple back-propagation algorithm with a learning rate of 0.4 and
a momentum of 0.9, the variation of which was outside the scope
of our investigation. However these two parameters likely had an
effect on our results.

The next important parameter in creating a viable agent was the
number of games played during training. We expected our agent
to improve significant as the number of games increased. Teasuro
experimentally determined that for backgammon, somewhere be-
tween 10° and 10% games were required before his agent was of
competitive standard [Tesauro 2002]. Due to time constraints, we
trained up to a maximum of 300,000 games. Our need for creating
large training data sets under the time constraints of our research re-
quired that we focus the majority of our training efforts on playing
our agent against itself as our other agents played too slowly (Fig-
ure 2). However we did also run some preliminary training tests
against other opponents, but results were not available at time of
writing.

Unlike Teasuro, our training occurred at the end of games. This
was initially planned so as to allow us to evaluate the agent’s per-
formance accurately at the end of each ’training run’, however it
later proved to be a sub-optimal design choice. While it simplified
coding, it meant our agent could only learn from its decisions once
a game was over. This was in contrast to the dynamic adaptation of
both TDGammon and our TD-Leaf agent described above. In ret-
rospect this was a poor decision as we wasted further opportunities
for improvement.

It was discovered during our initial investigation that due to the
deterministic nature of its opponents, our agent would explore very
little of *Jumper’s’ search space before the network weights con-
verged. This lead to poor play against agents that it had not been
trained against. In order to circumvent this issue, we added two sep-
arate modes of play to our agent; learning and non-learning. Under
learning mode, we set a probability epsilon to 0.1% under which
the agent would make a random move rather than the best evaluated
move. This lead to increased exploration of the game tree and over
the course of thousands of games improved play.

Due to time constraints, our neural network agent was optimized
to play as white, with a planned investigation of it’s effectiveness

4 . M. Brunton and S. Cohney

as a black player dependant on the success of the white agent and
further time.

Reinforcement Learning Techniques in "Jumper’ . 5

3. EVALUATION OF AGENTS

Our testing was largely performed against our own Als, a random player, a trained MLP Player, a standard Minimax player (with alpha-
beta pruning), a Negascout player and a modified Minimax player with feature weights adjusted by TD Learning. With our Minimax (with
alpha-beta pruning) performing the strongest of the set, it served as a good benchmark.

Vs Random (B) | MLP50K (B) | Minimax (B) | Negascout (B) | Minimax with TD Learning (B)
Random (W) 56.2% 100% 0% 0% 0%
MLP50K (W) 100% 47% 100% 100% 0%
Minimax (W) 100% 100% 100% 100% 0%
Negascout (W) 100% 100% 0% 100% 0%
Minimax with TD Learning (W) 100% 100% 100% 100% 74%

Fig. 1: 6x6 Board - White Win Percentage from 1000 games

Figure 1 shows the win percentages for each player against each other player with (W) and (B) indicating their color. Results show a clear
hierarchy in the strength of players. Expectedly, all beat the random player. Further than that, the search Als consistently beat the MLP Al,
and our final Al with TD determined weights emerged as the victor.

Al Time per Move

Minimax 22090ms
Minimax alpha-beta with TD-leaf: 250ms
Minimax alpha-beta with Gradient Descent 289ms
Minimax alpha-beta with TD and Gradient Descent 246ms
Minimax alpha-beta without Learning 199ms
Minimax alpha-beta (place before jump) 1756ms
Minimax alpha-beta (jump before place) 224ms
Negascout 391ms

MLP Player 3.31ms

Random Player 0.163ms

Fig. 2: Move Timings (conducted on 6x6 random board, searching to depth 5 over 1000 trials)

For our comparison of player efficiency Figure 2 also showed a clear ordering. The neural network was the fastest of all the intelligent
players, with the faster of the search Als two orders of magnitude behind, even after « — 8 pruning and move ordering optimizations.

Al Wins-Losses
Gradient Descent (W) 22-20
Gradient Descent (B) 33-13
Total (With-Without) 35-53

Fig. 3: Win Comparison of Gradient Descent vs Without (starting on random board)

Al Wins-Losses
TD-leaf starting first 29-20
TD-leaf starting second 35-11
Total (With-Without) 55-40

Fig. 4: Win Comparison of TD-leaf vs Without (starting on random board)

Figures 4 and 3 show the results of games of Jumper between an agent with hard-coded weight parameters, and agents equipped with
machine-learning. When an agent with machine learning played as white (first), it beat its opponent. However in both cases the margin was
not as great as when the agent with hard-coded parameters played first. The parameters chosen for the hard-coded agent were arrived at
through observation of how these parameters converged under machine learning.

Figure 5 shows the improvement over time of the MLP Player, with the average difference between player scores on the y axis calculated
as the number of white pieces on the board minus the number of black pieces on the board. It shows an initial steep improvement in outcomes
followed by a levelling off. This occurs against all opponents and for all board sizes we tested.

One potential cause of the limited win behaviour exhibited by nally the number of hidden units determines an upper bound on
the neural network player could be the result of three factors we’ve the complexity of the function. Our weights appeared to converge
identified. The first could be a lack of training. There is also the at around 20,000 games, an effect consistent with what Tesauro

issue of local minima in the vector space of the error function. Fi- identified as ’saturation’. This was proportional to the size of the

M. Brunton and S. Cohney

6x6 Training Outcames (Self Trained)
15 T T

T T
vs Negascout +

v vs Minimax
% 10 L vs Random % |
s}
w
3
£
£ 5
o]
c
g o0 i
[
N~
o
[¥]
5 5 T
9] F
[}]
o 4
2 g
T -10 1 B
K

-15 1 1 1 1 1

0 50000 100000 150000 200000 250000 300000

Games Played

Awverage Outcome (White minus Black)

4x4 Training Outcames (Self Trained)
15 T T

T T T
vs Negascout +
vs Minimax

10 | vs Random * i

J10 b i

715 L 1 L 1 L L L
0 5000 10000 15000 20000 25000 30000 35000 40000

Games Played

Fig. 5: MLP Player Training

network [Tesauro 2002]. Such effects can be reduced by increasing
the number of hidden units, however this exponentially increases
the time taken to train the network.

The results were also found to be sensitive to initial weights,
which are randomly generated, and this lead to variance across
runs other than as displayed above. In one instance, the MLP
player weights converged to an average win case for a 4x4 board,
but this was not found to be replicable.

Another issue facing further improvement by the MLP player was
over training against certain opponent types. When trained against
a given deterministic opponent player (Negascout or Minimax) the
network converged to an average win. This is an example of ’over-
training’ whereby rather than becoming a strong generalist player
of the game, the MLP player adjusted to beat the specific determin-
istic move sequence. This was demonstrable by introducing a small
element of randomness into opponents under which circumstances
the MLP’s advantage was negated. Additionally an over-trained
network generally demonstrated poor outcomes against the other
test Al. This issue could possibly be reduced in future by use of a
better training algorithm that further takes into account the possi-
bility of such local minima. Additionally one would train against
a series of different players in order to learn from their various
play-styles, however this is worthwhile only after establishing a
base-line level of learning.

One observation not noted in the results section was feature dis-
covery by the MLP player. After around 20,000 games, the MLP
self-trained player began to play with strategies commonly exhib-
ited by human players, including ’corners first’, and a preference
for safe spaces over spaces that could be jumped. This is important
as it shows the development of human-like intelligence within the
Al even though it did not develop to a level where it could consis-
tently beat the searching algorithms.

Our most effective player was also one of our least complex. The
only addition over standard minimax was the introduction of alpha-
beta pruning, and a very modest node-ordering scheme which in-
volved generating jump-nodes before place-nodes. While our fi-
nal weight parameters were derived from observations of gradient
descent and TD-leaf machine learning techniques, it served to be
more effective to hard-code these constants into our final imple-
mentation.

4. CONCLUSION

Our research in building an adept game-playing agent saw us trial
many different techniques, however the majority of these did not
make it into our final player. Whilst our implementation of gradi-
ent descent, and temporal difference machine learning helped us
to arrive at optimal parameters for our parameter weight vector, it
was more effective to hard-code these values, rather than recompute
them each time the agent was run. The node ordering scheme which
proved most effective was also the simplest, and whilst our neural
network showed promise of further improvement, it was our more
traditional minimax with alpha-beta algorithm which displayed the
best game-playing ability. By focussing on an effective evaluation
function, and keeping our player efficient enough to search to a
depth of five, we were able to devise a very successful agent. Fur-
ther improvements would likely focus on improving the TD Learn-
ing data set and storing it across games.

The neural network player showed strong signs of learning, im-
proving to the point of developing features given zero-knowledge
other than a set of legal moves. However, under the conditions we
trialled it did not learn to the point of defeating the Als developed
using different reinforcement techniques. In particular, a strong ad-
vantage was held by the Al trained using TD Learning. Teasaro
indicated that TDGammon improved to the point of being com-
petitive with expert players largely after the integration of features
from ’Neurogammon’ into the Neural Network, and adding such
expert knowledge is a strong point for future research in improv-
ing outcomes. However Tesauro also notes that “’this provides only
short-term benefit and is dangerously likely to turn out to be a waste
of time in the long run” [Tesauro 2002]. Thus efforts are better
focused on keeping the input simple but developing new learning
techniques. One possible option is performing a search beyond a
single ply and this is the recommended avenue for future investiga-
tion.

Our results indicate currently that simplicity is the key to de-
veloping strong players for "Jumper’. Dynamic learning algorithms
fared poorly compared to pre-training our agents. Whilst there may
exist stronger features and parameter settings, it would require fur-
ther research and development to identify these.

APPENDIX

A. NEURAL NETWORK STRUCTURE

The neural network was based off TDGammon and utilized a sim-
ilar structure. Each cell was represented by three input units, one
to represented occupied by black, one for white, and one for dead.
A clear space was represented by a zero on all three and each was
active with a value for one if the condition was matched. There
were two additional non-cell input units, a bias unit and a unit that
indicated whose turn it was to move. The input cells were then
completely connected to a series of sixty (for 6x6) hidden units,
each with a sigmoid activation function. Finally, these were com-
pletely connected to two output units, one representing the prob-
ability of Black winning and one representing the probability of
White winning, from the input game state. The reason for separat-
ing the two was to include the possibility of a draw, such states
where Pr(White) and Pr(Black) both tend to zero.

Fig. 6: An example three-layered neural network, additional units
not shown

B. NEGASCOUT PSEUDOCODE

negascout(Board, alpha, beta, depth, color):
if (d == maxdepth or game_over):
return colorxevaluate (Board)

a
b

alpha
beta

for each Move m in Board:
Board ’=Board . apply_move (m)
t=—negascout (Board’, —beta, t, d+1, —color)

if (t>a && t<beta && notFirstMove && d<maxdepth —1):

a = —negascout(Board’,—beta,—t,d+1,—color)
a = Max(a,t)

if (a>beta):
return a

b = a+l
return a

C. TD LEARNER PSEUDOCODE

Reinforcement Learning Techniques in 'Jumper’ . 7

gradientDescent ():
trainingSet := getTrainingSet(SIZE)
for node in trainingSet:
updateWeights (node)

tdLeaf (nodes, leafUtility):
for node in nodes:
updateWeights (node, leafUtility)

updateWeights (node):
util = evaluate (node)
trueUtil = expand(node)
while (abs(util — trueUtil) > EPS):

for i = 1..n:
w_i = w_i — Nx(util — trueUtil)*f_i(node)
util = evaluate (node)

trueUtil = expand(node)

updateWeights (node, trueUtil)
util = evaluate (node)
while (abs(util — trueUtil) > EPS):
for i = 1..n:
w_i = w_i — Nx(util — trueUtil)*f_i(node)
util = evaluate (node)

ACKNOWLEDGMENTS

We are grateful to the following people for resources, discussions
and suggestions: Mahsa Salehi, Prof. Chris Leckie., Prof. Michael
Kirley

REFERENCES

Jonathan Baxter, Andrew Tridgell, and Lex Weaver. 1999. TDLeaf
(lambda): Combining temporal difference learning with game-tree
search. arXiv preprint ¢s/9901001 (1999).

George Cybenko. 1989. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems 2, 4 (1989), 303—
314.

Imran Ghory. 2004. Reinforcement learning in board games. (2004).

Robert Hecht-Nielsen. 1989. Theory of the backpropagation neural net-
work. In Neural Networks, 1989. IJCNN., International Joint Conference
on. IEEE, 593-605.

John Lenz. 2003. Reinforcement Learning and the Temporal Difference
Algorithm. (2003).

Qian Liang. 2003. The Evolution Of Mulan: Some studies in game tree
pruning and evaluation functions in the game of amazons). Ph.D. Disser-
tation. The University of New Mexico, Albuquerque, New Mexico.

James L. McClelland. 2013. Explorations in Parallel Distributed Process-
ing: A Handbook of Models, Programs, and Exercises. Chap 9. pages.

Alexander Reinefeld and Tsan-sheng Hsu. 1983. An Improvement to the
Scout Tree Search Algorithm. (1983).

DIJ Richards and TP Hart. 1961. The alpha-beta heuristic. (1961).

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (2nd Edition). Prentice Hall.

Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An
introduction. Vol. 1. Cambridge Univ Press.

Gerald Tesauro. 2002. Programming backgammon using self-teaching neu-
ral nets. Artificial Intelligence 134, 1 (2002), 181-199.

